An Effective Approach for Imbalanced Classification: Unevenly Balanced Bagging

نویسندگان

  • Guohua Liang
  • Anthony G. Cohn
چکیده

Learning from imbalanced data is an important problem in data mining research. Much research has addressed the problem of imbalanced data by using sampling methods to generate an equally balanced training set to improve the performance of the prediction models, but it is unclear what ratio of class distribution is best for training a prediction model. Bagging is one of the most popular and effective ensemble learning methods for improving the performance of prediction models; however, there is a major drawback on extremely imbalanced data-sets. It is unclear under which conditions bagging is outperformed by other sampling schemes in terms of imbalanced classification. These issues motivate us to propose a novel approach, unevenly balanced bagging (UBagging), to boost the performance of the prediction model for imbalanced binary classification. Our experimental results demonstrate that UBagging is effective and statistically significantly superior to single learner decision trees J48 (SingleJ48), bagging, and equally balanced bagging (BBagging) on 32 imbalanced data-sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roughly Balanced Bagging for Imbalanced Data

Imbalanced class problems appear in many real applications of classification learning. We propose a novel sampling method to improve bagging for data sets with skewed class distributions. In our new sampling method “Roughly Balanced Bagging” (RB Bagging), the number of samples in the largest and smallest classes are different, but they are effectively balanced when averaged over all subsets, wh...

متن کامل

An Effective Method for Imbalanced Time Series Classification: Hybrid Sampling

Most traditional supervised classification learning algorithms are ineffective for highly imbalanced time series classification, which has received considerably less attention than imbalanced data problems in data mining and machine learning research. Bagging is one of the most effective ensemble learning methods, yet it has drawbacks on highly imbalanced data. Sampling methods are considered t...

متن کامل

An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets

Most classifiers work well when the class distribution in the response variable of the dataset is well balanced. Problems arise when the dataset is imbalanced. This paper applied four methods: Oversampling, Undersampling, Bagging and Boosting in handling imbalanced datasets. The cardiac surgery dataset has a binary response variable (1=Died, 0=Alive). The sample size is 4976 cases with 4.2% (Di...

متن کامل

Extending Bagging for Imbalanced Data

Various modifications of bagging for class imbalanced data are discussed. An experimental comparison of known bagging modifications shows that integrating with undersampling is more powerful than oversampling. We introduce Local-and-Over-All Balanced bagging where probability of sampling an example is tuned according to the class distribution inside its neighbourhood. Experiments indicate that ...

متن کامل

Neighbourhood sampling in bagging for imbalanced data

Various approaches to extend bagging ensembles for class imbalanced data are considered. First, we review known extensions and compare them in a comprehensive experimental study. The results show that integrating bagging with under-sampling is more powerful than over-sampling. They also allow to distinguish Roughly Balanced Bagging as the most accurate extension. Then, we point out that complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013